AIMA Artificial Intelligence a modern approch

AIMA-exercises is an open-source community of students, instructors and developers. Anyone can add an exercise, suggest answers to existing questions, or simply help us improve the platform. We accept contributions on this github repository.

Exercise 7.16 [inf-exercise]

This exercise looks into the relationship between clauses and implication sentences.

  1. Show that the clause $(\lnot P_1 \lor \cdots \lor \lnot P_m \lor Q)$ is logically equivalent to the implication sentence $(P_1 \land \cdots \land P_m) {\;{\Rightarrow}\;}Q$.

  2. Show that every clause (regardless of the number of positive literals) can be written in the form $(P_1 \land \cdots \land P_m) {\;{\Rightarrow}\;}(Q_1 \lor \cdots \lor Q_n)$, where the $P$s and $Q$s are proposition symbols. A knowledge base consisting of such sentences is in implicative normal form or Kowalski form @Kowalski:1979.

  3. Write down the full resolution rule for sentences in implicative normal form.

View Answer