AIMA Artificial Intelligence a modern approch

AIMA-exercises is an open-source community of students, instructors and developers. Anyone can add an exercise, suggest answers to existing questions, or simply help us improve the platform. We accept contributions on this github repository.

Exercise 8.34

The circuit representation in the chapter is more detailed than necessary if we care only about circuit functionality. A simpler formulation describes any $m$-input, $n$-output gate or circuit using a predicate with $m+n$ arguments, such that the predicate is true exactly when the inputs and outputs are consistent. For example, NOT gates are described by the binary predicate ${NOT}(i,o)$, for which ${NOT}(0,1)$ and ${NOT}(1,0)$ are known. Compositions of gates are defined by conjunctions of gate predicates in which shared variables indicate direct connections. For example, a NAND circuit can be composed from ${AND}$s and ${NOT}$s: Using this representation, define the one-bit adder in Figure adder-figure and the four-bit adder in Figure 4bit-adder-figure, and explain what queries you would use to verify the designs. What kinds of queries are not supported by this representation that are supported by the representation in Section circuits-section?

View Answer