AIMA Artificial Intelligence a modern approch

AIMA-exercises is an open-source community of students, instructors and developers. Anyone can add an exercise, suggest answers to existing questions, or simply help us improve the platform. We accept contributions on this github repository.

Exercise 14.22 [gibbs-proof-exercise]

This exercise explores the stationary distribution for Gibbs sampling methods.

  1. The convex composition $[\alpha, q_1; 1-\alpha, q_2]$ of $q_1$ and $q_2$ is a transition probability distribution that first chooses one of $q_1$ and $q_2$ with probabilities $\alpha$ and $1-\alpha$, respectively, and then applies whichever is chosen. Prove that if $q_1$ and $q_2$ are in detailed balance with $\pi$, then their convex composition is also in detailed balance with $\pi$. (Note: this result justifies a variant of GIBBS-ASK in which variables are chosen at random rather than sampled in a fixed sequence.)

  2. Prove that if each of $q_1$ and $q_2$ has $\pi$ as its stationary distribution, then the sequential composition $q q_1 \circ q_2$ also has $\pi$ as its stationary distribution.

View Answer